CHERRY-PICKING
FOR HUGE SUCCESS

CCCCCCCCCC

WHO AM |

Armin Ronacher
@mitsuhiko on Twitter/Github
Part of the Pocoo Team

Flask, Jinja2, Werkzeug, ...

PREFACE

Framework/ Programming language fights are boring.
Just use the best tool for the job.

ITHE PROBLEM

CONSIDER TWITTER

e 2006: Off the shelf Ruby on Rails application; static HTML; basic
XML AP

 Now: The APl is the service the website itself is a JavaScript
frontend to that API; everything is rate limited; Erlang/Java

DOES RUBY SUCK?Y

No it does not.
Neither does Python.
Ruby / Python are amazing for quick prototyping.

Expect your applications to change with the challenges of the
oroblem.

SHIFTING FOCUS

e Expectyour problems and implementations to change over
time

e You might want to rewrite a part of your application in another
language

PROPOSED SOLUTION

e Build smaller applications

e Combine these apps together to a large one

CROSS BOUNDARIES

e "Pygments is awesome”
e | need Pygments in Ruby”
e A:rewrite Pygments in Ruby
o B:use adifferent syntax highlighter

o (:Justaccept Python and implement a service you can use
from Ruby

AGNOSTIC CODE

[T ONLY DOES DJANGO

e You wrote a useful library that creates thumbnails?

Don't make it depend on Django, even if you never want to
switch from Django

You might want to move the thumbnailing into a queue at
one point and not need Django and your DB in your queue

PASS “X" IN :-)

Do not import “X"

Store “X"on a class instance

or pass“X"in as parameter
Make “X"as specific as possible

But not more than it has to be

PROTOCOL EXAMPLES

FLASK'S VIEWS

Views can return response objects
Response objects are WSGI applications
No typecheck!

Return any W5Gl app

FLASK + WSGI

from flask import Flask

app = Flask(__name_)

def hello world app(environ, start response):
headers = [('Content-Type', 'text/plain')]
start_response('200 OK', headers)
return ['Hello World!']

@app.route('/")
def index():
return hello world app

DIFFLIB

e Python's difflib module does not need strings, it works on
anything that is iterable and contains hashable and
comparable items.

"X"==hashable and comparable

e Asspecific as possible, but not too restrictive. Bad would be
"X"== 5tring

CONSEQUENCES

e Thiscame in very helpful when | had to diff HTML documents

e Parseinto a stream of XML events — diff

e Render outinline HTML again with the differences wrapped in
<ins>/

BEAUTY IN DESIGN

Genshi's XML stream's events is made of hashable, immutable
objects

The Stream is a Python iterable

difflib can work with exactly that: hashable objects in a
sequence

Goes well together, but was never designed to be used together

GENSHI'S STREAM

>>> from genshi.template import MarkupTemplate
>>> t = MarkupTemplate('<?xml version="1.0"?><test>'
'<foo bar="baz"/></test>"')
>>> g = iter(t.generate())
>>> g.next()
('XML_DECL', (u'1.0', None, -1), (None, 1, 0))
>>> g.next()
('START', (QName('test'), Attrs()), (None, 1, 21))
>>> g.next()
('START', (QName('foo'), Attrs([(QName('bar'), u'baz')])), (None, 1, 27))

DIFFING XML

from genshi.template import MarkupTemplate
from difflib import SequenceMatcher

get stream = lambda x: list(MarkupTemplate(x).generate())
a = get stream('<?xml version="1.0"?><foo><a/></foo>")

b = get stream('<?xml version="1.0"?><foo></foo>")
matcher = SequenceMatcher(a=a, b=b)

for op, il, 12, j1, j2 in matcher.get opcodes():
if op == 'replace’:

print 'del', a[il:i2]

print 'ins', b[jl:j2]

elif op == 'delete':
print 'del', a[il:i2]
elif op == 'insert':

print 'ins', b[jl:j2]

DIFF RESULT

del [("START', (QName('a'), Attrs()), (None, 1, 26)),
('END', QName('a'), (None, 1, 30))]

ins [("START', (QName('b'), Attrs()), (None, 1, 26)),
('END', QName('b'), (None, 1, 30))]

INLINE DIFFING HTML

e mitsuhiko/htmldiff

>>> from htmldiff import render_html diff

>>> render_html diff('Foo bar baz', 'Foo <i>bar</i> baz')
u'<div class="diff">Foo <1 class="tagdiff replaced"”">bar</1> baz</div>"’
>>> render_html diff('Foo bar baz', 'Foo baz')

u'<div class="diff">Foo bar baz</div>'

>>> render_html diff('Foo baz', 'Foo blah baz')

u'<div class="diff">Foo <ins>blah</ins> baz</div>"'

INTERFACE EXAMPLES

SERIALIZERS

e Dpickle, phpserialize, itsdangerous, json

« Within the compatible set of types, they all work as drop-in
replacements for each other

EXAMPLE

>>> from itsdangerous import URLSafeSerializer
>>> smod = URLSafeSerializer('secret-key"')
>>> smod.dumps([1, 2, 3])

"WzEsMiwzXQ. ss4nn31gDDAwx1qsWvj3EQIFdIQ’
>>> smod.loads()

[1, 2, 3]

>>>

>>> import pickle as smod

>>> smod.dumps([1, 2, 3])
"(Lpo\nIl\naI2\naI3\na.'

>>> smod.loads()

[1, 2, 3]

"WHAT'S YOUR
POINT ARMIN?”

\\
_ @4
7 o

3 ":f"
N\

LOOSELY COUPLED

e Small, independent pieces of code (both “libraries” and “apps”)
e Combine them with protocols and through interfaces

e Thisis how you can structure applications

SPLITTING UP ...

e ...isnotthe problem

e Combining things together is

MERGEPOINTS

WSGI

HTTP

/eroMQ
Message queues
A datastore

JavaScript

OVERVIEW

e Pros:

« Every Python framework speaks it or can easily be ported to
work on top of WSGI or to be able to host WSGI apps

o (ons:
e Only works within Python

e Often insufficient

THE WSGI ENV

e Apps that need request data can limit themselves to the data
in the WSGl env

e That way they are 100% framework independent.
e Good: env[PATH_INFO]

e Bad:request.path_info

MIDDLEWARES

o Often overused
e Sometimes helpful though:
e Debugging
e Profiling
e Dispatching to different applications

e Fixing server / browser bugs

WSGI AS MERGEPOINT

from myflaskapp import application as appl
from mybottleapp import application as app2
from mydjangoapp import application as app3

app = DispatchedApplication({
WA appl,
"/api': app2,
"/admin': app3

})

NOT MERGING?

e (orrect: these applications are independent

e Butwhat happens if we inject common information into
them?

WSGI AS MERGEPOINT

class InjectCommonInformation(object):

def init (self, app):
self.app = app

def call (self, environ, start response):
db_connection = connect database()
user = get current_user(environ, db_connection)
environ['myapplication.data’'] = {
‘current_user': user,
'db’: db_connection

¥

return self.app(environ, start response)

app = InjectCommonInformation(app)

PROBLEMS WITH THAT

Cannot consume form data
Processing responses from applications is a complex matter

Cannot inject custom HTML into responses easily due to the
various ways WSGl apps can be written

What if an app runs outside of the WSGI request/response
cycle?

LIBRARIES

o Werkzeug
o WebOb

e Paste

DJANGO & WSGI

Django used to do WSGl really badly

Getting a documented WSGl entrypoint for applying
middlewares

Fasy enough to pass out WSGI apps with the Django Response
object

WSGI -> DJANGO

from werkzeug.test import run _wsgi app
from werkzeug.wrappers import WerkzeugResponse
from django.http import HttpResponse

def make response(request, app):
iter, status, headers = run_wsgi app(app, request.META)
status code = int(status.split(None)[0])
resp = HttpResponse(iter, status=status_code)
for key, value in headers.iteritems():
resp[key] = value
return resp

def make wsgi app(resp):
return WerkzeugResponse(resp, status=resp.status_code,
headers=resp.items())

USAGE

from my wsgi app import application
from wsgi to _django import make response

def my django view(request):
return make _response(request, application)

OVERVIEW

e Pros:
e Language independent
o (acheable
e (oOns:
e Harder to work with than WSGI
e Complex specification

e Same problems as WSG

PROXYING

o Write three different apps
e Letnginx do the proxying

e The more HTTP you speak, the better

COOL THINGS

It all your services speak HTTP properly you can just put
caching layers between them

HTTP can be debugged easily (curl)

Entirely language independent

SUGGESTION

o Letyourservices speak HTTP

e You need syntax high
application is written

N
exposes Pygments via HT T

9

Nting with Pygments but your

RU

oy? Write a small Flask app that

D

LIBRARIES

e Python-Requests
e Your favorite WSGI Server (gunicorn, CherryPy, Paste etc))

e Jornado, Twisted

/EROMQ_

DIMG)

NOT A QUEUE

o ZeroMQ is basically sockets on steroids
e Language independent
e Different usage patterns:

e push/pull

e DUD/SUb

ZEROMQ_VS HTTP

/eroMQ is easier to use than HT TP
You however don't get the nice caching

On the plus side you can dispatch message to many
subscribers

/ZeroMQ abstracts the bad parts of sockets and HT TP away
from you (timeouts, EINTR, etc))

RANDOM THOUGHTS

e /eroMQ hides connection problems
o Blocks on lack of connectivity

e You might have to build your own broker

MESSAGE QUEUES

‘, 7 -
'r'/// T —_

4

IT MIGHT TAKE A WHILE

Move long running tasks outside of the request handling
Drocess

Possibly dispatch it to different machines

But: It can be an entirely different code that processes the
gueue entry, different language even

QUEUES

Accessor library: Celery
AMQP (RabbitMQ)
Redis

Tokyo Tyrant

VARIOUS THINGS

Don't expect your calls to be nonblocking
Greatly simplifies testing!
Build your own gueue > no queue

Redis queues are a good start

A DATASTORE

THE OBVIOUS ONE

e Use the same datastore for two different applications.

e Foraslong aseverybody plays by the rules this is simple and
efficient.

CLASSICAL EXAMPLE

e Flask application

e Django Admin

REDIS

A datastore

Remote datastructures!

Can easily be used as a queue

Simple interface, bindings for every language

Python pushes, Java pulls and executes

BASH QUEUE CONSUMER

#!/bin/bash
QUEUE_NAME=my key

while :

do
args="redis-cli -d $'\t' blpop $QUEUE NAME © | cut -f2°
./my-script $args

done

AVASCRIPT

IT'S AWESOME

o (Geeks hate JavaScript
e The average users does not care at all
e Why do we hate JavaScript?

e Language us ugly

e (an be abused for things we think are harmful (user
tracking)

UGLY LANGUAGE

o Acceptit
e Use CoffeeScript
o it'sthe Ckind of ugly, not the PHP one

CAN BE ABUSED

e SO can cars, bittorrent etc.

e Grow up -

GOOGLE'S BAR

That Google bar on top of all their products?
You can implement that in JavaScript only
Fetch some JSON

Display current user info

Application independent

[S IT USED?

Real world example: xbox.com
Login via live.com
Your user box on xbox.com is fetched entirely with JavaScript

Login requires JavaScript, no fallback

DICE'S BATTLELOG

Made by DICE/ESN for Battlefield 3
Players join games via their Browser

The joining of games is triggered by the browser and a token
is handed over to the game.

Browser plugin hands over to the game client.

TECHNOLOGIES

Python for the Battlelog service
JavaScript for the frontend

Java for the push service

C++ for the Game Client and Server

HTTP for communication

OTHER THINGS

JavaScript can efficiently transtorm the DOM

You can do things you always wanted to do no the server side
but never could because of performance or scaling
considerations

Instantly updating page elements!

backbone,js

TESTING

JavaScript testing only sucks for others

You control the service, you know the APl endpoints. Speak
HTTP with them

HtmIUnit has pretty good JavaScript support

Selenium supports HtmlUnit

PROCESSES

DAEMONS

e Yes,you need to keep them running
e Yesitcan be annoying

e systemd /supervisord help

SYSTEMD

Socket is managed by the OS
Your application activates on the first request to that socket
Restart applications, clients queue up in the OS

Python's socket module does not operate on arbitrary file
numbers before 3 (AFAIK)

PROCESSES+

e But processes are a good idea on Unix:

o Different privileges

e You can shoot down individual pieces without breaking the
whole system

e You can performance tune individual things better

e No global lock :-)

PYTHON 3

e libpython2 and libpython3 have clashing symbols
e You cannot run Python 2 and Python 3 in the same process

e /eroMQ /HTTP etc. are an upgrade option

lucumr.pocoo.org/talks/

http://lucumr.pocoo.org/talks/
http://lucumr.pocoo.org/talks/

